

Machine Learning Approaches for Comprehensive Analysis of Population Cancer Registry Data

Ph.D Defense

Authored by Dídac Florensa Cazorla

Supervised by Pere Godoy Garcia Francesc Solsona Tehàs Jordi Mateo Fornés

Industrial supervision by Miquel Mesas Julió

19th April 2023

1.Motivation

2.Introduction

3.Hypotheses

4.Objectives

5.Methodology (6 papers)

6.Conclusions and future research

Motivation

RISK FACTORS AND LIFESTYLE DATABASE

POPULATION CANCER REGISTRY DATABASE

* Introduction * Population-based Cancer Registry (PBCR)

Universitat de Lleida

Salut/G

The registry was established in 2017 to retrospectively register new cases from 2012

This system allows to study the characteristic of Lleida. This population differs from other regions

The system is registering 90% of cases

Introduction Pharmacology medicines

 Previous studies demonstrated the relationship between some medicines and cancer¹.

• There is also prior evidence for a protective effect of some drugs. One such case is aspirin².

• Aspirin is prescribed for preventing recurrent cardiovascular events and for relieving symptoms

of rheumatoid arthritis³.

¹Friedman GD *et al*. Screening pharmaceuticals for possible carcinogenic effects: Initial positive results for drugs not previously screened. Cancer Causes Control. 2009;20(10):1821–35.
²Rothwell P.M. *et al*. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomized trials. The Lancet. 2010; 376 (9754); 1714-1750.

³Bibins-Domingo. *et al*. Aspirin Use for the Primary Prevention of Cardiovascular Disease and Colorectal Cancer: U.S. Preventive Services Task Force Recommendation Statement. Annals of Internal Medicine. 2016.

Artificial Intelligence (AI)

Digital computer's ability to understand and perform tasks associated with intelligent beings.

AI applications

- 1. Natural Language Process
- 2. Computer vision
- 3. Robotics
- 4. Machine Learning

Machine Learning

Supervised learning

It involves training a model to learn a function that maps input data to the correct output labels

Unsupervised learning

Type of machine learning where the model is not given any labelled training data and is instead asked to learn patterns

Hypotheses

13456 To extract, integrate and assess external databases such as lifestyle and medicines prescriptions.

To develop a cloud platform to analyze cancer incidence.

To analyze associations between overweight, smoking and heavy alcohol use and Secondary Primary Cancer.

5 6 To analyze the association between aspirin on some cancers.

Salut/ S Gestió de Serveis Sanitaris

Registre de càncer de L	leida ≡					🗉 📍 Log out
Buscar Q	Incidence					
🙆 Main menu	Filtre					
N Incidence	-		_			
× Risk factors	Tots	-	E Analysis year			
X Mortality						
	Incidence		Incidence table			
			incluence table			
	Map Barplot	_			Buscar:	
	+		Region	Cases	Incidence	÷
	- <u>_</u>		Alta Ribagorra	9	256	
			Garrigues	118	588	
			Noguera	222	557	
	locide to the second	nce (100.000 hab)	Pallars Jussà	73	521	
		00 - 200 00 - 100	Pallars Sobirà	28	381	
	-	00 - 50 - 50	Pla d'Urgell	179	484	
		Leaflet			Enrere	1 2 Endavant
	Purchasi di da anno		Dimenida			
	Evolucio de casos		Piramide			
			95-99-			Gender
	2450		90-94- 85-89- 80-84-			Female
	2400		75-79-70-70-74-			Male
	2330		65-69- 60-64-			
	Ŭ 2250		0 50-54- 45-49-			
	2200		40-44 - 35-39 -			
	2150		30-34- 25-29- 20-24-	- -		
	2100		15-19- 10-14-			
	- 2012 2013 2014 2015	2016	0-4-	0		_
	Year			Population		

Rural and urban areas differ in cancer incidence rates¹

- In Lleida, approximately half of the population lives in rural areas
- Multiple Correspondence Analysis as a technique to explore associations between cancer incidence and sociodemographic information.

¹Centers for Disease Control and Prevention. *Colorectal Cancer Incidence, United States—2003–2019.* USCS Data Brief, no. 33. Atlanta, GA: Centers for Disease Control and Prevention, US Department of Health and Human Services: 2023.

Paper II

Multiple Correspondence Analysis (MCA)

Paper II Methodology

1. To explore and visualize information contained on individuals described by categorical variables

2. The **contribution** enables us to consider how much influence a category has in determining to the entire set of the active category.

3. To evaluate the relationships between population, age and gender for each cancer.

Paper II MCA Associations

Colorectal cancer

- Colorectal cancer is the highest incidence cancer in Lleida region for both genders
- Overweight, smoking or demographic information can be associated with the risk of colorectal cancer¹

Non-supervised algorithms

MCA to detect relations among large datasets and K-means to identify cluster of patients

¹Safiri *et al*. The global, regional, and national burden of colorectal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet Gastroenterology and Hepatology. 2019; 4(12).

Paper III MCA and K-means

- Un-supervised learning algorithm used in data-mining and pattern recognition.
- The algorithm partitions the data set into K pre-defined distinct non-overlapping clusters where each data point belongs to only one group.

Ф

Cluster1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
Urban***	Rural*	Semi- urban**	Urban***	Semi- urban**
Age >75	Age 50-64	Age >75	Age 65-74	Age 65-74
Low income	High income	Low income	Low income	Low income
Male	Female	Male	Male	Female
Non- smoker	Non- smoker	Non- smoker	Smoker	Non- smoker
Overweight	Normal weight	Obesity	Normal weight	Overweight
Alive	Alive	Death	Alive	Alive

*< 2,000 inhabitants: rural

>2,000 and <10,000 inhabitants: **semi-urban

*** > 10,000 inhabitants: urban

Cluster1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
Urban***	Semi- urban**	Semi- urban**	Urban***	Semi- urban**
Age 65-74	Age >75	Age 50-64	Age 65-74	Age >75
High income	Low income	Low income	Low income	Low income
Male	Male	Male	Male	Male
Non-smoker	Non-smoker	Non-smoker	Non-smoker	Non- smoker
Obesity	Obesity	Overweight	Obesity	Overweight
Alive	Alive	Alive	Alive	Death
Stage II	Stage II	Stage 0	Stage III	Stage III

*< 2,000 inhabitants: rural

>2,000 and <10,000 inhabitants: **semi-urban

*** > 10,000 inhabitants: urban

Paper IV Context

1. Cancer survival trends are generally increasing. One medical consequence is an increased of subsequent diagnosis with another cancer.

2. Such risk factors as obesity, smoking or heavy alcohol use could be determinant in developing a subsequent primary cancer (SPC).

3. To analyze the association between smoking and heavy drinking and the risk of SPC in Lleida.

Salut/GS Gestió de Serveis Sanitaris

	Total		SPC	sa					T . 1		CDC	3	1	
	(DV)	%	n	% (n/py) * 100	Crude HR	95% CI	1		lotal		SPC	Sa		
C 1	(93)	70		70 (II/ Py) 100	crude mit	3370 CI	-		(py)	%	n	% (n/py) * 100	Crude HR	95% CI
Gender								Body mass index						
Female	4,349	42.6	69	1.6	Ref. group	-		Normal weight	2,781	26.3	63	2.3	Ref. group	-
Male	6,208	58.4	165	2.7	1.7	1.3 - 2.2		Overweight	4,616	43.7	108	2.3	1.0	0.7 - 1.4
Age								Obese	3,160	29.9	63	2.0	0.9	0.6 - 1.3
50-59	2,195	20.8	30	1.4	Ref. group	123		Smoking						
60-69	3,415	32.3	79	2.3	1.7	1.1 - 2.6		No	7,462	70.7	146	2.0	Ref. group	-
70-79	3,416	32.4	102	3.0	2.1	1.5 - 3.3		Yes	3,095	29.3	88	2.8	1.5	1.1 - 1.9
80-	1,531	14.5	24	1.6	1.1	0.6 - 2.0		Diabetes						
Cancer type								No	10,162	96.3	224	2.2	Ref. group	1-1
Type 3	323	3.1	4	1.2	Ref. group	-		Yes	395	3.7	10	2.5	1.2	0.6 - 2.2
Type 2	2,584	23.4	29	1.1	0.9	0.3 - 2.6		Heavy drinking						
Type 1	2,119	21.2	66	3.0	2.4	0.9 - 6.7	1	No	10,404	98.6	225	2.2	Ref. group	-
Type 0	5,524	52.3	135	2.4	2.0	0.7 - 5.4		Yes	153	1.4	9	5.9	2.7	1.4 - 5.4

	Hazard ratio	95% Cl a
Female	1.0	Ref. group
Male	1.4	1.1 - 1.9
Age 50-59	1.0	Ref. group
Age 60-69	1.6	1.1 - 2.5
Age 70-79	2.2	1.5 - 3.4
Age 80-	1.2	0.7 - 2.0
Smoking	1.3	1.0 - 1.7
Heavy drinking	2.4	1.3 - 4.8

	Males		Females	
	Adjusted HR ^a	95% Cl ^b	Adjusted HR	95% Cl
Age 50-59	1.0	Ref. group	1.0	Ref. group
Age 60-69	1.6	1.0 - 2.7	1.8	0.8 - 3.9
Age 70-79	2.0	1.3 - 3.4	2.6	1.2 - 5.7
Age 80-	0.5	0.2 - 1.2	3.0	1.3 - 7.1
Diabetes	1.4	07-2.8	-	-
Smoking	1.2	1.0 - 1.6	1.8	0.8 - 3.7
Heavy drinking	2.3	1.1 - 4.7	3.2	0.4 - 23.6

- Approximately 1.8 million new colorectal cancer cases were diagnosed worldwide.
- Between 350 and 400 new cases in Lleida were diagnosed each year.
- Some studies estimate that 30-50 % of colorectal cases could be avoided¹.
- Aspirin has long been known to prevent cardiovascular and cerebrovascular.

■GBD 2019 Cancer Risk Factors Collaborators. The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022 Aug 20;400(10352):563-591.

Salut/GS Gestió de Serveis Sanitaris

Study population **Risk factors Statistics** and aspirin use • Body Mass Index (BMI): 18.5-· Colorectal cancer cases diagnosed · Cox 25-29.9 24.9 normal weight, between 2012 and 2016 proportional overweight and >30 obese. hazard model \cdot Inhabitants from Lleida region aged > • **Smoking:** at least 5 years previous Hazard ratios cancer diagnosis 50 years and 95% \cdot Aspirin exposition during, at least, 5 Confidence • **Heavy drinking:** >40 grams/day in years. Intervals men and >24 grams/day in women for \cdot Aspirin use > 75 mg/daily 1 or more years

	Total				C 1		
	Person-Year (p-y)	%	n	% (n/p-y)	HR ¹	95% CI	
Gender							
Female	639,455	53.1	485	0.8	1.0	Ref. group	
Male	563,716	46.9	791	1.4	1.9	1.6-2.1	
Age							
(50-59)	393,275	32.7	303	0.8	1.0	Ref. group	
(60-69)	297,538	24.7	426	1.4	1.8	1.6-2.1	
(70-79)	215,272	17.9	349	1.6	2.0	1.9-2.6	
(80-89)	147,817	12.3	184	1.2	1.6	1.3-1.9	
(90–)	149,269	12.4	14	0.1	0.1	0.1 - 0.2	
Aspirin							
Non-use	1,068,470	88.8	1138	1.2	1.0	Ref. group	
Use	134,701	11.2	138	1.0	0.9	0.8-1.1	
Body mass index							
Normal weight	350.994	29.2	169	0.5	1.0	Ref. Group	
Overweight	404.905	33.7	504	1.2	2.5	2.2-3.1	
Obesity	447,272	37.2	603	1.3	2.7	2.3-3.3	
Risky drinking							
No	1,177,736	97.9	1220	1.0	1.0	Ref. Group	
Yes	25,435	2.1	56	2.2	2.1	1.6–2.7	
Smoking							
No	1,094,891	91.0	1056	1.0	1.0	Ref. Group	
Yes	108,280	9.0	220	2.0	2.0	1.8–2.4	

¹ Hazard ratio.

	Adjusted Hazard Ratio (aHR); 95% CI ¹	<i>p</i> -Value	
Female	-	Ref. Group	
Male	1.8 (1.6–2.1)	< 0.001	
(50-59)	-	Ref. Group	
(60–69)	1.8 (1.6–2.1)	< 0.001	
(70–79)	2.3 (1.9–2.7)	< 0.001	
(80-89)	2.2 (1.8–2.6)	0.007	
(90-)	0.2 (0.1–0.3)	< 0.001	
Aspirin use	0.7 (0.6–0.8)	0.006	
Normal weight	-	Ref. Group	
Overweight	1.4 (1.2–1.7)	< 0.001	
Obesity	1.5 (1.3–1.8)	< 0.001	
Risky drinking	1.6 (1.2–2.0)	0.006	
Smoking	1.4 (1.3–1.7)	< 0.001	

¹ Confidence interval.

	Me	en	Women		
	Adjusted Hazard Ratio (aHR); 95% CI ¹	<i>p-</i> Value	Adjusted Hazard Ratio (aHR); 95% CI ¹	<i>p</i> -Value	
(50–59)	-	Ref. Group	Ξ	Ref. Group ²	
(60-69)	1.9 (1.7-2.3)	< 0.001	1.7 (1.3-2.2)	< 0.001	
(70-79)	2.3 (1.9-2.8)	< 0.001	2.3 (1.7-2.9)	< 0.001	
(80-89)	2.1 (1.6-2.7)	< 0.001	2.2 (1.7-3.0)	< 0.001	
(90–)	0.2 (0.1-0.4)	< 0.001	0.2 (0.1-0.5)	< 0.001	
Aspirin use	0.7 (0.6-0.9)	0.005	0.6 (0.4–0.8)	0.005	
Normal weight	-	Ref. Group ²	-	Ref. Group ²	
Overweight	1.5 (1.2-2.0)	< 0.001	1.2 (0.9–1.6)	0.1	
Obesity	1.6 (1.3-2.1)	< 0.001	1.4 (1.2–1.9)	0.004	
Risky drinking	1.6 (1.2-2.1)	0.001	1.2 (0.4-3.7)	0.7	
Smoking	1.5 (1.3–1.7)	<0.001	1.4 (0.9–2.2)	0.1	

¹ Confidence interval. ² Reference group.

- Nowadays, cancers such as pancreatic or lung are the highest mortal.
- Some studies suggest that aspirin decreased the risk of some types of cancer¹.
- Exist controversies against the protective effect of aspirin on some cancers.

¹Tsoi K *et al*. Long-tearm use of low-dose aspirin for cancer prevention: A 10-year population cohort study in Hong Kong. International Journal of Cancer. 2019; 145 (267).

Paper VI

Salut/(S) Gestió de Serveis Sanitaris

Relative risk

	Cancer Incidence				
Cancers	Total n= 154,715 (%)	Aspirin group	Non-aspirin group n = 138,117 (%)	Relative risk (95% Cl ^a)	
		n = 16,598 (%)			
Oesophagus	32 (0.02)	3 (0.02)	29 (0.03)	0.86 (0.26 - 2.82)	
Stomach	135 (0.09)	18 (0.11)	117 (0.08)	1.28 (0.78 – 2.1)	
Colorectal	1,276 (0.82)	138 (0.83)	1,138 (0.82)	1.01 (0.8 - 1.2)	
Liver	60 (0.04)	7 (0.04)	53 (0.04)	1.09 (0.5 – 2.42)	
Pancreas	97 (0.06)	8 (0.05)	89 (0.06)	0.63 (0.31 – 1.31)	
Lung and bronchus	426 (0.28)	61 (0.37)	365 (0.26)	1.39 (1.06 – 1.82)	
Leukaemia	328 (0.21)	56 (0.34)	272 (0.20)	1.71 (1.28 – 2.28)	
Breast (female only)	737 (0.48)	56 (0.34)	681 (0.49)	0.77 (0.58 – 1.02)	
Prostate (male only)	916 (0.59)	113 (0.78)	803 (0.58)	1.0 (0.82 – 1.23)	
Bladder	567 (0.37)	100 (0.60)	467 (0.34)	1.78 (1.43 – 2.21)	
Lymphoma	131 (0.08)	8 (0.05)	123 (0.09)	0.54 (0.26 - 1.11)	

*A Cox regression was calculated for each cancer

MCA and K-means are used for exploring large databases without preexisting hypotheses. However, in cancer epidemiology is typically hypotheses-driven.

The shorter follow-up did not allow for more Secondary Primary Cancers to be observed. A longer observation period would improve the quality of the sample.

Aspirin can be purchased directly from pharmacies without a doctor's prescription. The results are consistent with previous literature.

Risk factors data comes from clinical records and may be underreported.

The cloud applications offer accessibility and variability that are crucial to add qualified knowledge from data to medical experts.

Multiple Correspondence Analysis (MCA) is an ideal algorithm to analyze associations between cancer and some factors.

- •... Multiple Correspondence Analysis (MCA) is an ideal algorithm to analyze associations between cancer and some factors.

MCA and K-means is a perfect alliance for detecting patterns and associations of cancer from information about patients and risk factors.

The significance of PBCR for monitoring and analyzing cancer and their potential research when integrated with other databases, such as risk factors or medication exposures.

The significance of PBCR for monitoring and analyzing cancer and their potential research when integrated with other databases, such as risk factors or medication exposures.

Smoking and heavy alcohol use increase the risk of SPC during the first follow-up years, especially among men.

The significance of PBCR for monitoring and analyzing cancer and their potential research when integrated with other databases, such as risk factors or medication exposures.

Smoking and heavy alcohol use increase the risk of SPC during the first follow-up years, especially among men.

Aspirin use decreases the risk of colorectal cancer and overweight,
smoking and heavy drinking increase this risk. Aspirin also decreases the risk of pancreatic, prostate cancer and lymphoma.

Data warehouse

Add external databases

Future work

Data warehouse

Add external databases

Data Analysis

Extend similar studies with other types of cancer

Future work

Data warehouse

Add external databases

Data Analysis

Extend similar studies with other types of cancer

Cancer prediction

Train and deploy supervised algorithms to predict cancer

Future work

Data warehouse

Add external databases

Data Analysis

Extend similar studies with other types of cancer

Cancer prediction

Train and deploy supervised algorithms to predict cancer

Decision Support System

Integration to other population cancer registries

In eHealth, quality is more important than quantity. This drives the innovation in the healthcare industry.

Machine Learning Approaches for Comprehensive Analysis of Population Cancer Registry Data

Ph.D Defense

Authored by Dídac Florensa Cazorla

Supervised by Pere Godoy Garcia Francesc Solsona Tehàs Jordi Mateo Fornés

Industrial supervision by Miquel Mesas Julió

19th April 2023